Courses given 2012/13 by Centre for Mathematical Sciences
◄ 12/13 ►
Mathematical Statistics
Course Code  Credits  Cycle  Programme  S.Ex. stud.  Language  Course Name  Footnote  Links  12/13 sp1 
12/13 sp2 
12/13 sp3 
12/13 sp4 


FMSF15  7.5  G2  C, D, E, F, I, Pi  X  E1  Markov Processes  KS KE U W T  1  
FMS086  7.5  G2  B, K, N    S  Mathematical Statistics  KS KE U W T  1  
FMS140  7.5  G2  W    S  Mathematical Statistics, Basic Course  KS KE U W T  1  
FMSN20  7.5  A  C, D, E, F, Pi  X  E1  Spatial Statistics with Image Analysis  KS KE U W T  1  
FMSF10  7.5  G2  C, D, E, F, I, L, M, MWIR  X  E1  Stationary Stochastic Processes  X  KS KE U W T  1  
FMS065  7.5  G2  C, Pi, RH    E2  Statistical Methods for Safety Analysis  KS KE U W T  1  
FMSN25  7.5  A  F, I, Pi  X  E1  Valuation of Derivative Assets  KS KE U W T  1  
FMS012  9  G2  I    S  Mathematical Statistics, Basic Course  KS KE U W T  1  2  
FMS012  C, D  1  2  
FMS012  E  2  3  
FMS012  Pi  2  3  
FMS012  F  3  4  
FMS110  7.5  A  D, F, Pi  X  E1  NonLinear Time Series Analysis  KS KE U W T  1  2  
FMS161  7.5  A  F, I, Pi  X  E1  Financial Statistics  KS KE U W T  2  
FMSF01  3  G2  V    S  Mathematical Statistics  X  KS KE U W T  2  
FMS032  7.5  G2  L, V    S  Mathematical Statistics, Basic Course  KS KE U W T  2  
FMS051  7.5  A  C, D, E, F, I, Pi  X  E2  Mathematical Statistics, Time Series Analysis  KS KE U W T  2  
FMSN15  7.5  A  F, Pi  X  E1  Statistical Modelling of Multivariate Extreme Values  KS KE U W T  2  
FMSN10  7.5  A  F, Pi  X  E1  Survival Analysis  KS KE U W T  2  
FMSN30  7.5  A  D, F, L, M, Pi  X  E1  Linear and Logistic Regression  KS KE U W T  3  
FMS091  7.5  A  D, F, I, Pi  X  E2  Monte Carlo and Empirical Methods for Stochastic Inference  KS KE U W T  3  
FMSF05  7.5  G2  F, I, Pi  X  E2  Probability Theory  KS KE U W T  3  
FMSN35  7.5  A  C, D, E, F, I, Pi  X  E2  Stationary and Nonstationary Spectral Analysis  KS KE U W T  3  
FMS072  7.5  G2  D, E, F, MLIV, MWIR, N, Pi, W  X  E2  Design of Experiments  KS KE U W T  4  
FMSN05  3  A  Pi  X  E  International Project CourseMathematical Modelling  X  KS KE U W T  4  
FMS035  7.5  G2  M    S  Mathematical Statistics, Basic Course  KS KE U W T  4  
FMS045  6  G2  C, D, F, I    S  Stationary Stochastic Processes  X  KS KE U W T  4  
FMS045  Pi  X  Course on hold  
FMS047  3  A  D, I    S  Stationary Stochastic Processes, Project Work  X  KS KE U W T  4  
FMS155  7.5  A  D, F, I, Pi  X  E2  Statistical Modelling of Extreme Values  KS KE U W T  4 
FMSF10 (C, D, E, F, I) Stationary Stochastic Processes: Only one of the courses FMS045 and FMSF10 may be included in a degree.
FMSN05 (Pi) International Project CourseMathematical Modelling: Limited number of participants. Specific application procedure. The course is given in August.
FMS045 (C, D, F) Stationary Stochastic Processes: Only one of the courses FMS045 and FMSF10 may be included in a degree.
FMS045 (I) Stationary Stochastic Processes: Compulsory course in the elective block ‘Mathematical Modelling’ for students admitted autumn 2010. The course is also an optional programme course. Only one of the courses FMS045 and FMSF10 may be included in a degree.
FMS045 (Pi) Stationary Stochastic Processes: The course is transferred from year 2 to year 3.
FMS045 (I) Stationary Stochastic Processes: Compulsory course in the elective block ‘Mathematical Modelling’ for students admitted autumn 2010. The course is also an optional programme course. Only one of the courses FMS045 and FMSF10 may be included in a degree.
FMS045 (Pi) Stationary Stochastic Processes: The course is transferred from year 2 to year 3.
Mathematics
Course Code  Credits  Cycle  Programme  S.Ex. stud.  Language  Course Name  Footnote  Links  12/13 sp1 
12/13 sp2 
12/13 sp3 
12/13 sp4 


FMA430  6  G1  B, BI, BME, K, L, N, V    S  Calculus in Several Variables  KS KE U W T  1  
FMA430  C, D  2  
FMA430  F, I  3  
FMA430  E, M, MD, W  4  
FMA170  6  A  C, D, E, F, L, Pi  X  E1  Image Analysis  KS KE U W T  1  
FMA661  7.5  G2  IDA    S  Probability Theory and Discrete Mathematics  KS KE U W T  1  
FMAA05  15  G1  BI, E, F, I, L, Pi, V, W    S  Calculus in One Variable  KS KE U W T  1  2  
FMA260  7.5  A  F, Pi  X  E2  Functional Analysis and Harmonic Analysis  KS KE U W T  1  2  
FMA140  6  A  D, F, Pi  X  E2  NonLinear Dynamical Systems  KS KE U W T  1  2  
FMA645  13.5  G1  IBYA, IBYI, IBYV, IDA, IEA    S  Calculus  KS KE U W T  1  2  3  
FMAA01  15  G1  BME, C, D, M, MD    S  Calculus in One Variable  KS KE U W T  1  2  3  
FMAA01  B, K, N  1    3  4  
FMA085  4.5  G1  Pi    S  Mathematical Communication  KS KE U W T  1  2    4  
FMA420  6  G1  C, F, Pi, W    S  Linear Algebra  KS KE U W T  1  
FMA420  B, I, K, M, MD, N  2  
FMA420  BI, E, L, V  3  
FMA420  BME, D  4  
FMAF01  7  G2  F, N, Pi    S  Mathematics  Analytic Functions  KS KE U W T  1  
FMAF01  C, D, E, I  X  3  
FMA120  6  A  Pi  X  E2  Matrix Theory  KS KE U W T  1  2  
FMA120  C, D, E, F  3  4  
FMA175  3  A  C, D, E, F, L, Pi  X  E1  Image Analysis, Project  KS KE U W T  2  
FMAA10  3  G1  Pi    S  Mathematical Modelling  X  KS KE U W T  2  
FMA145  3  A  D, F, Pi  X  E1  Nonlinear Dynamical Systems, Project  KS KE U W T  2  
FMA051  6  A  D, E, F, I, Pi  X  E1  Optimization  X  KS KE U W T  2  
FMA135  6  G1  C, D, E, F, Pi  X  E2  Geometry  KS KE U W T  2  3  
FMA250  7.5  A  F, Pi  X  E2  Partial Differential Equations with Distribution Theory  KS KE U W T  2  3  
FMAF05  7  G2  F, N, Pi    S  Mathematics  Systems and Transforms  KS KE U W T  2  
FMAF05  C, D, E, I  X  4  
FMA125  3  A  Pi    E1  Matrix Theory, Project  KS KE U T  2  
FMA125  D, E, F  4  
FMAN10  7.5  A  C, D, F, Pi  X  E1  Algebraic Structures  X  KS KE U W T  3  
FMAF10  5  G2  B, C, D, K, L, M, W    S  Applied Mathematics  Linear systems  X  KS KE U W T  3  
FMA270  6  A  C, D, E, F, Pi  X  E1  Computer Vision  KS KE U W T  3  
FMA240  6  G2  D, E, F, Pi  X  E2  Linear and Combinatorial Optimization  KS KE U W T  3  
FMA111  6  A  D, F, Pi    S  Mathematical Structures  KS KE U W T  3  
FMA021  7.5  A  D, E, F, M, Pi    S  Applied Mathematics  KS KE U W T  3  4  
FMAN01  7.5  A  E, F, Pi, W  X  E2  Biomathematics  X  KS KE U T  Course on hold  
FMA435  7.5  G1  Pi    S  Calculus in Several Variables  KS KE U W T  3  4  
FMA200  6  A  D, E, F, Pi  X  E2  Calculus of Variations  KS KE U T  3  4  
FMA023  3  A  F, Pi    E1  Applied Mathematics, Project  KS KE U W T  4  
FMA272  3  A  C, D, E, F, Pi  X  E1  Computer Vision, Project  KS KE U T  4  
FMA091  6  G1  C, D, E, F, Pi    S  Discrete Mathematics  KS KE U W T  4  
FMA656  4.5  G1  IBYA, IBYI, IBYV, IDA, IEA    S  Mathematics, Linear Algebra  KS KE U W T  4  
FMAN05  6  A  D, F, N, Pi  X  E1  Quantum Computing  X  KS KE U W T  Course on hold 
FMAF01 (D) Mathematics  Analytic Functions: Can together with FMAF05 replace FMAF10. Also given as an elective course in the 4th year.
FMAA10 (Pi) Mathematical Modelling: All the projects must be approved during the current academic year. Thus one may not save results on single projects till a later year.
FMA051 (I) Optimization: Compulsory course in the elective block ‘Mathematical Modelling’ for students admitted autumn 2010. The course is also an optional programme course.
FMAF05 (C) Mathematics  Systems and Transforms: Only one of the courses FMAF05 and FMAF10 may be included in a degree.
FMAF05 (D) Mathematics  Systems and Transforms: Can together with FMAF01 replace FMAF10. Only one of the courses FMAF05 and FMAF10 may be included in a degree.
FMAF05 (D) Mathematics  Systems and Transforms: Can together with FMAF01 replace FMAF10. Only one of the courses FMAF05 and FMAF10 may be included in a degree.
FMAN10 (C, D, F, Pi) Algebraic Structures: In Spring 2013 the written exam will take place on the Saturday after the first week in the second study period.
FMAF10 (C) Applied Mathematics  Linear systems: Only one of the courses FMAF05 and FMAF10 may be included in a degree.
FMAF10 (D) Applied Mathematics  Linear systems: Can be replaced by FMAF01 and FMAF05 together. Only one of the courses FMAF10 and FMAF05 may be included in a degree.
FMAF10 (D) Applied Mathematics  Linear systems: Can be replaced by FMAF01 and FMAF05 together. Only one of the courses FMAF10 and FMAF05 may be included in a degree.
Numerical Analysis
Course Code  Credits  Cycle  Programme  S.Ex. stud.  Language  Course Name  Footnote  Links  12/13 sp1 
12/13 sp2 
12/13 sp3 
12/13 sp4 


FMNN25  7.5  A  D, E, F, Pi  X  E1  Advanced Course in Numerical Algorithms with Python/SciPy  KS KE U W T  1  
FMNN01  7.5  A  Pi  X  E  Numerical Linear Algebra  KS KE U W T  1  
FMNN01  F  1  
FMN100  6  A  C, D, E, F  X  E1  Numerical Methods in CAGD  KS KE U W T  1  
FMNN20  7.5  A  F, Pi  X  E1  Numerical Analysis for Elliptic and Parabolic Differential Equations  X  KS KE U T  Course on hold  
FMNN10  8  A  F, I, Pi  X  E1  Numerical Methods for Differential Equations  KS KE U W T  2  
FMNN05  7.5  A  D, F, Pi  X  E1  Simulation Tools  KS KE U W T  2  
FMN140  6  G2  V    S  Scientific Computing  KS KE U W T  2  3  
FMNN15  4  A  F, Pi  X  E1  Multigrid Methods for Differential Equations  KS KE U W T  3  
FMN011  6  G2  C, D, L  X  E1  Numerical Analysis  KS KE U W T  4  
FMN050  6  G2  E, I  X  E1  Numerical Analysis  X  KS KE U W T  4 
Bachelor's Projects of the Department
The list contains the bachelor's projects which are given by the department and which programme each bachelor's project is included in. The list is not necessarily complete before the academic year 2016/17.
Course Code  Credits  Programme  Course Name  Links 

FMSL01  15  C, D, E, F, I, Pi  Bachelor Project in Mathematical Statistics  KS KE U W 
Degree Projects of the Department
The list contains the degree projects which are given by the department and which programme each degree project is included in.
Course Code  Credits  Programme  Course Name  Links 

FMS820  30  BME, C, D, E, F, I, Pi, RH  Degree Project in Mathematical Statistics for Engineers  KS KE U W 
FMA820  30  BME, C, D, E, F, I, M, Pi  Degree Project in Mathematics for Engineers  KS KE U W 
FMN820  30  D, E, F, I, M, Pi  Degree Project in Numerical Analysis  KS KE U W 